本文根据山东省DEM图获取坡度、坡向图,使用了三种方式:Python GDAL工具自带的函数处理、Python中自己编写函数实现和arcgis中实现。
一.Python中实现(针对TIF格式的DEM数据)
1.利用gdal工具处理
(1)代码
- from osgeo import gdal, osr
-
- # 获取影像信息
- infoDEM = gdal.Info(r"D:\ProfessionalProfile\DEMdata\2_OutputArcMap\demsd0330UTM.tif")
-
-
- # 计算坡度、坡向
- slope = gdal.DEMProcessing(r'D:\ProfessionalProfile\DEMdata\6_DEMXuanRan\slopePy.tif',
- r"D:\ProfessionalProfile\DEMdata\2_OutputArcMap\demsd0330UTM.tif", "slope")
- aspect = gdal.DEMProcessing(r'D:\ProfessionalProfile\DEMdata\6_DEMXuanRan\aspectPy.tif',
- r"D:\ProfessionalProfile\DEMdata\2_OutputArcMap\demsd0330UTM.tif", "aspect", format='GTiff',
- trigonometric=0, zeroForFlat=1)
(2)结果
原图
slope图
aspect图
2.参考了网上的部分资料,自己写了一下利用DEM.tif格式的DEM数据获取坡度坡向。
(1)代码
大概分为几个步骤:读取DEM影像——计算梯度——计算坡度坡向——输出TIF影像,每一步都对应着相应的函数。
- from osgeo import gdal,ogr,osr
- import numpy as np
- import math
- import datetime
-
-
- # 读取TIFF遥感影像
- def read_img(filename):
-
- dataset = gdal.Open(filename) # 打开文件
- # dataset = gdal.Open(r'D:\ProfessionalProfile\DEMdata\slopeAspectPython0322\test.tif')
- im_width = dataset.RasterXSize # 栅格矩阵的列数
- im_height = dataset.RasterYSize # 栅格矩阵的行数
- im_bands = dataset.RasterCount # 波段数
- im_geotrans = dataset.GetGeoTransform() # 仿射矩阵,左上角像素的大地坐标和像素分辨率
- im_proj = dataset.GetProjection() # 地图投影信息,字符串表示
- im_data = dataset.ReadAsArray(0, 0, im_width, im_height)
- datatype = im_data.dtype
- del dataset # 关闭对象dataset,释放内存
-
- return im_data, im_proj, im_geotrans, im_width, im_height, im_bands, datatype
-
-
- # 为便于后续坡度计算,需要在原图像的周围添加一圈数值
- def AddRound(npgrid):
-
- nx, ny = npgrid.shape[0], npgrid.shape[1] # ny:行数,nx:列数;此处注意顺序
- # np.zeros()返回来一个给定形状和类型的用0填充的数组;
- zbc=np.zeros((nx+2,ny+2))
- # 填充原数据数组
- zbc[1:-1,1:-1]=npgrid
-
- #四边填充数据
- zbc[0,1:-1]=npgrid[0,:] #上边;0行,所有列;
- zbc[-1,1:-1]=npgrid[-1,:] #下边;最后一行,所有列;
- zbc[1:-1,0]=npgrid[:,0] #左边;所有行,0列。
- zbc[1:-1,-1]=npgrid[:,-1] #右边;所有行,最后一列
-
- #填充剩下四个角点值
- zbc[0,0]=npgrid[0,0]
- zbc[0,-1]=npgrid[0,-1]
- zbc[-1,0]=npgrid[-1,0]
- zbc[-1,-1]=npgrid[-1,0]
-
- return zbc
-
-
- #计算xy方向的梯度
- def Cacdxdy(npgrid,sizex,sizey):
-
- nx, ny = npgrid.shape
- s_dx = np.zeros((nx,ny))
- s_dy = np.zeros((nx,ny))
- a_dx = np.zeros((nx, ny))
- a_dy = np.zeros((nx, ny))
- # 忘记加range报错:object is not iterable
- # 坡度、坡向变化率的计算:https://help.arcgis.com/zh-cn/arcgisdesktop/10.0/help/index.html#/na/009z000000vz000000/
- for i in range(1,nx-1):
- for j in range(1,ny-1):
- s_dx[i,j] = ((npgrid[i-1,j+1]+2*npgrid[i,j+1]+npgrid[i+1,j+1])-(npgrid[i-1,j-1]+2*npgrid[i,j-1]+npgrid[i+1,j-1])) / (8 * sizex)
- s_dy[i, j] = ((npgrid[i+1, j-1] + 2 * npgrid[i+1, j] + npgrid[i+1,j+1])-(npgrid[i-1,j-1]+2 * npgrid[i-1,j] + npgrid[i-1,j+1])) / (8 * sizey)
-
- a_dx=s_dx*sizex
- a_dy=s_dy*sizey
- # 保留原数据区域的梯度值
- s_dx = s_dx[1:-1,1:-1]
- s_dy = s_dy[1:-1,1:-1]
- a_dx = a_dx[1:-1, 1:-1]
- a_dy = a_dy[1:-1, 1:-1]
- # np.savetxt(r"D:\ProfessionalProfile\DEMdata\slopeAspectPython0322\1dxdy.csv",dx,delimiter=",")
-
- return s_dx,s_dy,a_dx,a_dy
-
-
- #计算坡度/坡向
- def CacSlopAsp(s_dx,s_dy,a_dx,a_dy):
-
- # 坡度
- slope=(np.arctan(np.sqrt(s_dx*s_dx+s_dy*s_dy)))*180/math.pi #转换成°
-
- #坡向
- # #出错:TypeError: only size-1 arrays can be converted to Python scalars
- # a2 = math.atan2(a_dy,-a_dx)*180/math.pi
- a=np.zeros((a_dy.shape[0],a_dy.shape[1]))
- for i in range(0,a_dx.shape[0]):
- for j in range(0,a_dx.shape[1]):
- a[i,j] = math.atan2(a_dy[i,j], -a_dx[i,j]) * 180 / math.pi
-
- # 输出
- aspect = a
- # 坡向值将根据以下规则转换为罗盘方向值(0 到 360 度):
- # https://help.arcgis.com/zh-cn/arcgisdesktop/10.0/help/index.html#/na/009z000000vp000000/
- x, y = a.shape[0],a.shape[1]
- for m in range(0,x):
- for n in range(0,y):
- if a[m,n] < 0:
- aspect[m,n] = 90-a[m,n]
- elif a[m,n] > 90:
- aspect[m,n] = 360.0 - a[m,n] + 90.0
- else:
- aspect[m,n] = 90.0 - a[m,n]
-
- return slope,aspect
-
- # 遥感影像的存储,写GeoTiff文件
- def write_img(filename, tar_proj, im_geotrans, im_data, datatype):
-
- # 判断栅格数据的数据类型
- if 'int8' in im_data.dtype.name:
- datatype = gdal.GDT_Byte
- elif 'int16' in im_data.dtype.name:
- datatype = gdal.GDT_UInt16
- else:
- datatype = gdal.GDT_Float32
-
- # 判读数组维数
- if len(im_data.shape) == 3:
- # 注意数据的存储波段顺序:im_bands, im_height, im_width
- im_bands, im_height, im_width = im_data.shape
- else:
- im_bands, (im_height, im_width) = 1, im_data.shape
-
- # 创建文件时 driver = gdal.GetDriverByName("GTiff"),数据类型必须要指定,因为要计算需要多大内存空间。
- driver = gdal.GetDriverByName("GTiff")
- dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
-
- dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数
- dataset.SetProjection(tar_proj) # 写入投影
-
- if im_bands == 1:
- dataset.GetRasterBand(1).WriteArray(im_data) # 写入数组数据
- else:
- for i in range(im_bands):
- dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
-
- del dataset
-
- # 定义投影函数(此次运行没有用到)
- def SetPro(filename,tar_proj,outputfilename):
-
- ds = gdal.Open(filename)
- im_geotrans = ds.GetGeoTransform() # 仿射矩阵信息
- im_proj = ds.GetProjection() # 地图投影信息
- im_width = ds.RasterXSize # 栅格矩阵的列数
- im_height = ds.RasterYSize # 栅格矩阵的行数
- im_bands = ds.RasterCount
- ds_array = ds.ReadAsArray(0, 0, im_width, im_height) # 获取原数据信息,包括数据类型int16,维度,数组等信息
-
- # 设置数据类型(原图像有负值)
- datatype = gdal.GDT_Float32
- # 目标投影
- img_proj = tar_proj
- # 输出影像路径及名称
- name = outputfilename
- driver = gdal.GetDriverByName("GTiff") # 创建文件驱动
- dataset = driver.Create(name, im_width, im_height, im_bands, datatype)
- dataset.SetGeoTransform(im_geotrans) # 写入原图像的仿射变换参数
- dataset.SetProjection(img_proj) # 写入目标投影
-
- # 写入影像数据
- dataset.GetRasterBand(1).WriteArray(ds_array)
-
- del dataset
-
-
- if __name__ == "__main__":
-
- startime = datetime.datetime.now() # 程序开始时间
- # 读取ASTER GDEM遥感影像
- demgrid, proj, geotrans, row, column, band, type = read_img(r'D:\ProfessionalProfile\DEMdata\slopeAspectPython0322\SDdem.tif')
- oridata = demgrid
- # 为计算梯度给影像添加周围一圈数据
- demgrid = AddRound(demgrid)
- # 梯度计算
- dx1,dy1,dx2,dy2 = Cacdxdy(demgrid,30,30)
- # 坡度、坡向计算
- slope,aspect = CacSlopAsp(dx1,dy1,dx2,dy2)
- # 设置要投影的投影信息,此处是WGS84-UTM-50N
- tar_proj = '''PROJCS["WGS 84 / UTM zone 50N",
- GEOGCS["WGS 84",
- DATUM["WGS_1984",
- SPHEROID["WGS 84",6378137,298.257223563,
- AUTHORITY["EPSG","7030"]],
- AUTHORITY["EPSG","6326"]],
- PRIMEM["Greenwich",0,
- AUTHORITY["EPSG","8901"]],
- UNIT["degree",0.01745329251994328,
- AUTHORITY["EPSG","9122"]],
- AUTHORITY["EPSG","4326"]],
- UNIT["metre",1,
- AUTHORITY["EPSG","9001"]],
- PROJECTION["Transverse_Mercator"],
- PARAMETER["latitude_of_origin",0],
- PARAMETER["central_meridian",117],
- PARAMETER["scale_factor",0.9996],
- PARAMETER["false_easting",500000],
- PARAMETER["false_northing",0],
- AUTHORITY["EPSG","32650"],
- AXIS["Easting",EAST],
- AXIS["Northing",NORTH]]'''
- # 输出TIFF格式遥感影像,并设置投影坐标
- slopeT = write_img(r'D:\ProfessionalProfile\DEMdata\slopeAspectPython0322\slopeSDpy0326.tif', tar_proj, geotrans, slope, type)
- aspectT = write_img(r'D:\ProfessionalProfile\DEMdata\slopeAspectPython0322\aspectSDpy0326.tif', tar_proj, geotrans, aspect, type)
-
- endtime = datetime.datetime.now() # 程序结束时间
- runtime = endtime-startime # 程序运行时间
-
- print('运行时间为: %d 秒' %(runtime.seconds))
运行时间较长,后续需要优化。
(2)运行结果
DEM图像
输出的slope影像
输出的aspect影像
二.在arcgis中计算slope和aspect
(1)先在ENVI中统计一下DEM信息,看到有部分数据小于0.
所以将背景值设为-300,这样的话就不会影响其他信息。
(2)计算坡度
此时计算出来的坡度范围大概都在88-90度之间,这一看就是有问题。后来查了一下,原因是:从地理空间数据云下载的ASTER GDEM影像没有投影坐标,以至于Z值不准确。
(3)在arcgis中进行“重投影”:WGS 84 – UTM 50N
最后得到的结果看起来正常了一些。
slope图
aspect图
3.本文主要参考
[1]坡度:https://help.arcgis.com/zh-cn/arcgisdesktop/10.0/help/index.html#/na/009z000000vz000000/
[2]坡向:https://help.arcgis.com/zh-cn/arcgisdesktop/10.0/help/index.html#/na/009z000000vp000000/
[3]博主锃光瓦亮的枕小路:https://blog.csdn.net/weixin_45561357/article/details/106677574
[4]师动,朱奇峰,杨勤科,龙永清.DEM分辨率对坡度算法选择影响的分析[J].山地学报,2020,38(06):935-944.
[5]博主箜_Kong:https://blog.csdn.net/liminlu0314/article/details/8498985?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522161657597316780266219174%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=161657597316780266219174&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_v1~rank_blog_v1-1-8498985.pc_v1_rank_blog_v1&utm_term=%E5%9D%A1%E5%BA%A6%E5%9D%A1%E5%90%91