2022年 11月 3日

各种Python组件

基本工具

Anaconda

  • 下载anaconda
bash Anaconda3-5.1.0-Linux-x86_64.sh
  • 1

注意
在安装的过程中,会问你安装路径,直接回车默认就可以了。有个地方问你是否将anaconda安装路径加入到环境变量(.bashrc)中,输入yes(默认的是no)

  • 重启终端
  • 验证
conda --version
  • 1

Ipython notebook

pip3 install --upgrade pip
pip3 install jupyter
#启动
jupyter notebook
  • 1
  • 2
  • 3
  • 4

爬虫

pip install bs4
  • 1

scrapy框架

#Ubuntu
sudo apt-get install python-pip
sudo apt-get install python-dev
sudo apt-get install libevent-dev
sudo apt-get install libssl-dev
sudo pip install scrapy
scrapy version		#安装完毕后查看scrapy版本


#Manjaro
sudo pacman -S python-pip
sudo pip install scrapy
scrapy version		#安装完毕后查看scrapy版本
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

PlantomJS
下载http://phantomjs.org/download.html
安装

tar -xvf phantomjs-2.1.1-linux-x86_64.tar.bz2
sudo mv phantomjs-2.1.1-linux-x86_64 /usr/local/src/phantomjs
sudo ln -sf /usr/local/src/phantomjs/bin/phantomjs /usr/local/bin/phantomjs
  • 1
  • 2
  • 3

检查是否安装成功

phantomjs -v
  • 1

可视化

pip install matplotlib

sudo pip install seaborn

pip install HoloViews

pip install Altair

pip install redis
pip install bokeh

pip install networkx

pip install plotly

pip install geoplotlib

pip install folium

pip install vincent

pip install mpld3

pip install python-igraph

pip install missingno
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

可视化平台
superset

股票

财经数据接口——tushare

pip install tushare
  • 1

技术分析库——talib

pip install ta-lib
  • 1

或者

wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz  

gunzip ta-lib-0.4.0-src.tar.gz

tar -xvf ta-lib-0.4.0-src.tar

cd ta-lib

./configure --prefix=/usr  

make  

sudo make install  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
vim /etc/profile
  • 1

再最后一行添加

export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
  • 1

保存并执行

source /etc/profile
pip install ta-lib
  • 1
  • 2

机器学习

pip install -U scikit-learn
  • 1

深度学习

人脸识别

sudo apt-get install -y git

sudo apt-get install -y cmake

sudo apt-get install -y python-pip

sudo apt-get install libboost-all-dev

git clone https://github.com/davisking/dlib.git

cd dlib

mkdir build

cd build

cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1

cmake --build .

cd ..

python setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA

pip install face_recognition
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

tensorflow——CPU版

#Ubuntu
sudo apt-get install python3-pip python3-dev python-virtualenv
virtualenv --system-site-packages -p python3 ~/tensorflow
source ~/tensorflow/bin/activate		#激活 Virtualenv 环境
easy_install -U pip
pip3 install --upgrade tensorflow 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

验证是否安装成功

# 在Python中输入
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
  • 1
  • 2
  • 3
  • 4
  • 5

如果系统输出以下内容,就说明安装成功

Hello, TensorFlow!
  • 1